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Abstract. We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative
spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results
in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental
representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of
actions for these gauge theories.

1 Introduction

Gauge theories can be formulated on noncommutative
spaces. One recent approach is based on the Seiberg-
Witten map [1]. This is the one we are particularly inter-
ested in because it allows the formulation of a Lagrangian
theory in terms of ordinary fields. One can express such
a theory very intuitively via covariant coordinates [2]. In
this paper we give an explicit construction for the case
of non-Abelian gauge groups. In contrast to earlier ap-
proaches [3], this method now works for arbitrary gauge
groups.
The idea is to formulate field theories on noncommuta-

tive spaces as theories on commutative spaces and to ex-
press the noncommutativity by an appropriate �-product.
Gauge transformations then involve the �-product as well.
This prevents the gauge transformations from being Lie
algebra-valued. They can, however, be defined in the en-
veloping algebra [4]. It is possible to find transformations
representing the gauge group in the enveloping algebra
that depend on the parameters and the gauge potential
of the usual gauge theory only. An explicit form of such
transformations can be constructed by a power series ex-
pansion in a parameter that characterizes the noncommu-
tativity.
In the same manner fields that have the desired �-

product transformation properties can be constructed in
terms of fields with the transformation properties of a
usual gauge theory. For the gauge potential this amounts
to the analogue of the Seiberg-Witten map for arbitrary
non-Abelian gauge theories.
Finally we can consider actions that are invariant un-

der the �-product transformation laws. The Lagrangian of
such an action can then be expanded in terms of the fields

of a usual gauge theory and the parameter of the noncom-
mutativity enters as a coupling constant. New coupling
terms for a gauge theory appear. Such Lagrangians can be
seen as effective Lagrangians that are meaningful in the
tree approximation for the description of a phenomeno-
logical S-matrix. But one can also take them serious as
Lagrangians for a quantum field theory with all the radia-
tive corrections. In this context, the renormalizability of
the theory has to be investigated [5].
In this paper we explicitly compute the formulas up

to second order in the parameter that characterizes the
noncommutativity in the case of the Moyal-Weyl product.

2 Gauge transformations

A non-Abelian gauge theory is based on a Lie algebra

[T a, T b] = ifab
cT

c. (2.1)

In the usual formulation of a gauge theory fields are
considered that transform under gauge transformations
with Lie algebra-valued infinitesimal parameters1:

δαψ
0(x) = iα(x)ψ0(x), α(x) = αa(x)T a. (2.2)

It follows from (2.1) that

(δαδβ − δβδα)ψ0(x) = iαa(x)βb(x)fab
cT

cψ0(x)

≡ δα×βψ
0(x), (2.3)

with the shorthand

α× β ≡ αaβbf
ab

cT
c = −i[α, β]. (2.4)

1 Throughout we will denote fields with this transformation
property by ψ0
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In addition, a gauge potential ai,a(x) is introduced
with the transformation property

δαai,a(x) = ∂iαa(x)− f bc
aαb(x)ai,c(x), (2.5)

or equivalently,

ai(x) = ai,a(x)T a

δαai(x) = ∂iα(x) + i[α(x), ai(x)]. (2.6)

This allows the definition of covariant derivatives and the
field strength:

Diψ
0(x) = (∂i − iai)ψ0(x)

F 0
ijψ

0(x) = i
(DiDj − DjDi

)
ψ0(x). (2.7)

In a gauge theory on noncommutative coordinates
(2.2) is replaced by

δΛψ(x) = iΛ(x) � ψ(x). (2.8)

The �-product based on a quite general coordinate algebra
has been defined in [4]. In this paper, we shall evaluate
the respective formulas for the Moyal-Weyl-product only.
This is the product that is most frequently discussed in
the current literature, but we emphasize that the methods
used in this paper work for other �-products as well.
The �-product of two functions does not commute, it

reflects the algebraic properties of the space coordinates.
As a consequence, two transformations of the type (2.8)
cannot be reduced to the matrix commutator of the gen-
erators of the Lie algebra:

(δΛδΣ − δΣδΛ)ψ(x)
=
(
Λ(x) � Σ(x)−Σ(x) � Λ(x)

)
� ψ(x)

≡ [Λ(x) �, Σ(x)] � ψ(x). (2.9)

The parameters cannot be Lie algebra-valued, they have
to be in the enveloping algebra:

Λ(x) = Λa(x)T a + Λ1
ab(x) : T

aT b : + . . .
+Λn−1

a1...an
(x) : T a1 . . . T an : + . . . . (2.10)

The dots indicate that we have to sum over a basis
of the vector space spanned by the homogeneous poly-
nomials in the generators of the Lie algebra. Completely
symmetrized products form such a basis:

: T a : = T a

: T aT b : =
1
2
{T a, T b} = 1

2
(T aT b + T bT a)

: T a1 . . . T an : =
1
n!

∑
π∈Sn

T aπ(1) . . . T aπ(n) . (2.11)

The �-commutator of two enveloping algebra-valued
transformations will remain enveloping algebra-valued.
The price we seem to have to pay are infinitely many
parameters Λn−1

a1...an
(x), however, it is possible to define

gauge transformations where all these infinitely many pa-
rameters depend on the usual gauge parameter α(x) and

the gauge potential ai(x) and on their derivatives. Trans-
formations of this type will be denoted Λα[a] and their
x-dependence is purely via this finite set of parameters
and gauge potentials Λα[a] ≡ Λα(x)[a(x)] (for constant θ).
The transformation (2.8) will now be restricted to such

parameters Λα[a]

δαψ(x) = iΛα[a] � ψ(x). (2.12)

Each finite set of parameters αa(x) defines a “tower” Λα[a]
in the enveloping algebra that is entirely determined by
the Lie algebra-valued part. To define and construct this
tower we demand in accord with (2.3) (cf. [4]):

(δαδβ − δβδα)ψ(x) = δα×βψ(x). (2.13)

The variations δα are those of (2.12). More explicitly:

iδαΛβ [a]− iδβΛα[a] + Λα[a] � Λβ [a]− Λβ [a] � Λα[a]
= iΛα×β [a]. (2.14)

The variation δβΛα[a] refers to the ai-dependence of Λα[a]
and the transformation property (2.5) of ai.
It is natural to expand the star product in its “non-

commutativity” and to solve (2.14) in a power series ex-
pansion. For this purpose we introduce a parameter h:(
f � g

)
(x) = e

i
2 h ∂

∂xi θij ∂

∂yj f(x)g(y)|y→x

= f(x)g(x) +
i

2
hθij∂if(x)∂jg(x)

−1
8
h2θijθkl∂i∂kf(x)∂j∂lg(x) + . . . . (2.15)

We could have used θ as an expansion parameter, however
a θ-dependence of the fields might and will in fact arise
for other reasons.
We assume that it is possible to expand the tower Λα[a]

in the parameter h:

Λα[a] = α+ hΛ1
α[a] + h

2Λ2
α[a] + · · · . (2.16)

Now we expand (2.14) in h. To zeroth order we find (2.3)
which has the solution (2.2). To first order we obtain

iδαΛ
1
β [a]− iδβΛ

1
α[a] + [α,Λ

1
β [a]]− [β,Λ1

α[a]]− iΛ1
α×β [a]

= − i

2
θij{∂iα, ∂jβ}. (2.17)

There is a homogeneous part in Λ1
α[a] and an inhomo-

geneous part. We solve the inhomogeneous part with an
ansatz linear in θ, because the inhomogeneous part is lin-
ear in θ as well. For dimensional reasons there is only a
finite number of terms that can be used in such an ansatz.
The proper combination of such terms is

Λ1
α[a] =

1
4
θij{∂iα, aj} = 1

2
θij∂iαaaj,b : T aT b : . (2.18)

The derivative term ∂iα in the variation of the gauge
potential (2.6) compensates the inhomogeneous part in
(2.17), whereas the commutator term of the variation of
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the gauge potential combines with other terms of (2.17)
to produce Λ1

α×β [a].
We can add solutions of the homogeneous part of

(2.17). If there is a quantity Fi with the covariant trans-
formation property

δαFi = i[α, Fi] (2.19)

and such a term can easily be constructed, for instance
from the field strength and the covariant derivative in (2.7)

Fi = θjkDjF
0
ki, (2.20)

then we find a solution Λ̃1
α[a] of the homogeneous part of

(2.17):
Λ̃1

α[a] = cθij{∂iα, Fj}. (2.21)

This term can be added to Λ1
α[a] defined in (2.18). To first

order in h we obtain

Λ1
α[a] = θij

{
∂iα,

1
4
aj + cFj

}
. (2.22)

We can view the additional term as a redefinition of
the gauge potential:

ãi = ai + 4cFα
i . (2.23)

It does not change the transformation properties (2.6)

δαãi = ∂iα+ i[α, ãi]. (2.24)

Such generalized solutions as (2.22) have to be expected,
as it is only the transformation property of ai that mat-
ters. To define a physical theory, we have to make use of
the full freedom of the Seiberg-Witten map. It has been
shown that for finding a renormalizable theory the extra
terms are essential [6].
There are other solutions of the homogeneous equation

that cannot be obtained from a redefinition of the vector
potential ai. An example is

Λ̃1 ′
α [a] = cθij [∂iα, aj ]. (2.25)

The choice of the constant c = − 1
4 for this solution

of the homogeneous part of (2.17) would simplify some
of the calculations to come, however, we decide to work
with (2.18) instead, since this is a solution expressed in
the completely symmetrized basis (2.11) in the generators
of the Lie algebra.
To second order in h we obtain from (2.14):

iδαΛ
2
β [a]− iδβΛ

2
α[a] + [α,Λ

2
β [a]]− [β,Λ2

α[a]]− iΛ2
α×β [a]

= +
1
8
θijθkl[∂i∂kα, ∂j∂lβ]

− i

2
θij
(
{∂iΛ

1
α[a], ∂jβ} − {∂iΛ

1
β [a], ∂jα}

)
−[Λ1

α[a], Λ
1
β [a]]. (2.26)

The homogeneous part of the equation has the same struc-
ture as before. We shall use the expression (2.18) for Λ1

α[a]

and we see that the terms of the inhomogeneous part in-
volving Λ1

α[a] contribute to third order in T
a. With an ap-

propriate ansatz we can eliminate all these terms of third
order and of second order in T a as well. The respective
terms in the solution (2.27) can easily be identified. Fi-
nally we obtain a solution of (2.26)2:

Λ2
α[a] =

1
32
θijθkl

(
− 4{∂iα, {ak, ∂laj}}

−i{∂iα, {ak, [aj , al]}} − i{aj , {al, [∂iα, ak]}}
+2i[∂i∂kα, ∂jal]− 2[∂jal, [∂iα, ak]]

+2i[[aj , al], [∂iα, ak]]
)
. (2.27)

The solutions (2.18) and (2.27) are such that they are
of first and second order in θ respectively. We know from
[4] that we can expect a solution of (2.14) where the order
in θ and the order in T a are related. In such a solution the
contribution in θn will be of order n+1 in T a. The above
solutions are of this type. This can however be changed by
adding θ-dependent solutions of the homogeneous equa-
tion.

3 Fields

In a usual gauge theory, fields have the transformation
property (2.2). We have denoted fields that transform this
way by ψ0. In a gauge theory with the �-product fields are
supposed to transform as in (2.12). We show that fields
with this transformation property can be built from fields
with the transformation property (2.2) and the gauge po-
tential ai.
We expand in powers of h:

ψ[a] = ψ0 + hψ1[a] + h2ψ2[a] + · · · . (3.1)

To zeroth order in h, we obtain (2.2) and to first order:

δαψ
1[a] = iαψ1[a] + iΛ1

α[a]ψ
0 − 1

2
θij∂iα∂jψ

0. (3.2)

If we take the solution (2.18) for Λ1
α[a], we find that

ψ1[a] = −1
2
θijai∂jψ

0 +
i

4
θijaiajψ

0. (3.3)

will have the desired transformation property (2.12) to
first order in h. We proceed to the next order,

δαψ
2[a] = iαψ2[a] + iΛ1

α[a]ψ
1[a] + iΛ2

α[a]ψ
0

−1
2
θij∂iΛ

1
α[a]∂jψ

0 − 1
2
θij∂iα∂jψ

1[a]

− i

8
θijθkl∂i∂kα∂j∂lψ

0, (3.4)

use (2.27) for Λ2
α[a] and find:

ψ2[a] =
1
32
θijθkl

(
− 4i∂iak∂j∂lψ

0 + 4aiak∂j∂lψ
0

2 Similar results have been obtained in [7] and [8] in the
context of U(n)
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+8ai∂jak∂lψ
0 − 4ai∂kaj∂lψ

0 − 4iaiajak∂lψ
0

+4iakajai∂lψ
0 − 4iajakai∂lψ

0 + 4∂jakai∂lψ
0

−2∂iak∂jalψ
0 + 4iaial∂kajψ

0 + 4iai∂kajalψ
0

−4iai∂jakalψ
0 + 3aiajalakψ

0 + 4aiakajalψ
0

+2aialakajψ
0
)
. (3.5)

Homogeneous solutions of (3.2) and (3.2) can naturally be
added to these solutions. The adjoint field ψ̄[a] is easily
obtained from (3.3) and (3.5), keeping in mind that ai is
supposed to be self-adjoint for a unitary gauge group.

4 Gauge potentials and field strengths

In the same way as in the last section for ordinary fields we
can solve for an enveloping algebra-valued gauge potential.
Its transformation property is (for a definition, e.g. [2]):

δαAi = ∂iΛα[a] + i[Λα[a] �, Ai]. (4.1)

Again we expand in h:

Ai[a] = ai + hA1
i [a] + h

2A2
i [a] + · · · . (4.2)

As expected, we can recapture (2.6) to zeroth order, to
first order we obtain:

δαA
1
i [a] = ∂iΛ

1
α[a] + i[Λ

1
α[a], ai] + i[α,A1

i [a]]

−1
2
θkl{∂kα, ∂lai}. (4.3)

Again we use the solution (2.18) for Λ1
α[a] and find as a

solution to (4.3)

A1
i [a] = −1

4
θkl{ak, ∂lai + F 0

li}, (4.4)

where F 0
ij is the field strength of the ordinary Lie algebra-

valued gauge theory, introduced in (2.7)

F 0
ij = ∂iaj − ∂jai − i[ai, aj ]. (4.5)

To second order in h we obtain from (4.1):

δαA
2
i [a] = ∂iΛ

2
α[a] + i[α,A

2
i [a]] + i[Λ

1
α[a], A

1
i [a]]

+i[Λ2
α[a], ai]− −1

2
θkl{∂kα, ∂lA

1
i [a]}

−1
2
θkl{∂kΛ

1
α[a], ∂lai}

− i

8
θklθmn[∂k∂mα, ∂l∂nai]. (4.6)

With the choice (2.27) for Λ2
α[a] this has the following

solution:

A2
i [a] =

1
32
θklθmn

(
4i[∂k∂mai, ∂lan]− 2i[∂k∂iam, ∂lan]

+4{ak, {am, ∂nF
0
li}}+ 2[[∂kam, ai], ∂lan]

−4{∂lai, {∂mak, an}}+ 4{ak, {F 0
lm, F

0
ni}}

−i{∂ian, {al, [am, ak]}} − i{am, {ak, [∂ian, al]}}
+4i[[am, al], [ak, ∂nai]]− 2i[[am, al], [ak, ∂ian]]
−{am, {ak, [al, [an, ai]]}}
+{ak, {[al, am], [an, ai]}}
+[[am, al], [ak, [an, ai]]]

)
. (4.7)

With this solution at hand we now turn to the envelop-
ing algebra-valued field strength (defined in [2]):

Fij = ∂iAj − ∂jAi − i[Ai
�, Aj ], (4.8)

with the transformation property

δαFij = i[Λα[a] �, Fij ]. (4.9)

To express this field strength, we insert (4.4) and (4.7)
into (4.8). We could have used (4.9) to find a field with
the desired transformation property, as we did in Sect. 3.
This however does not reproduce the full solution (4.10)
which rests on the definition of Fij [a] in terms of the gauge
potential (4.2):

F 1
ij [a] =

1
2
θkl{F 0

ik, F
0
jl} − 1

4
θkl{ak, (∂l +Dl)F 0

ij}. (4.10)

F 2
ij [a] to second order in h is obtained similarly by in-
serting (4.7) into (4.8). The gauge potential Ai with its
transformation property (4.1) allows the definition of a
covariant derivative

Diψ = ∂iψ − iAi � ψ (4.11)

with the transformation (2.12):

δαDiψ = iΛα[a] �Diψ. (4.12)

5 Actions

The transformation laws of the field strength (4.9), the
fields (2.12) and the covariant derivatives (4.12) allow the
construction of invariant actions. It can be shown by par-
tial integration that the integral has the trace property for
the �-product:∫

f � g dx =
∫
g � f dx =

∫
fg dx. (5.1)

Thus we find an invariant action for the gauge poten-
tial

S = −1
4
Tr
∫
Fij � F

ij dx, (5.2)

as well as for the matter fields

S =
∫
ψ̄ � (γiDi −m)ψ dx. (5.3)

Our aim is to expand these actions in the fields ai

and ψ0 and to treat them as conventional field theories
depending on a coupling constant θ. We only do this here
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to first order in h and construct the Lagrangian from our
previous results:

mψ̄ � ψ = mψ̄0ψ0 +
i

2
hθklmDkψ̄

0Dlψ
0

ψ̄ � γiDiψ = ψ̄0γiDiψ
0 +

i

2
hθklDkψ̄

0γiDlDiψ
0

−1
2
hθklψ̄0γiF 0

ikDlψ
0

Fij � F
ij = F 0

ijF
0ij +

i

2
hθklDkF

0
ijDlF

0ij

+
1
2
hθkl{{F 0

ik, F
0
jl}, F 0ij}

−1
4
hθkl{F 0

kl, F
0
ijF

0ij}

− i

4
hθkl[ak, {al, F

0
ijF

0ij}] (5.4)

For the action we use partial integration and the cyclic-
ity of the trace and obtain to first order in h:∫

ψ̄ � (γiDi −m)ψ dx

=
∫
ψ̄0(γiDi −m)ψ0 dx

−1
4
hθkl

∫
ψ̄0F 0

kl(γ
iDi −m)ψ0 dx

−1
2
hθkl

∫
ψ̄0γiF 0

ikDlψ
0 dx (5.5)

−1
4
Tr
∫
Fij � F

ij dx

= −1
4
Tr
∫
F 0

ijF
0ij dx+

1
16
hθklTr

∫
F 0

klF
0
ijF

0ij dx

−1
2
hθklTr

∫
F 0

ikF
0
jlF

0ij dx (5.6)

6 The Abelian case

Noncommutative Abelian gauge theories have recently
been studied intensively and substantial results have been
obtained.
If such a theory is expanded not in the noncommuta-

tivity h as in the previous chapters, but in powers of the
gauge potential of the commutative theory as suggested
in [9], the following result is valid to all orders in θ and
first non-trivial order in a:

Ai[a] = θij
(
aj +

1
2
θklal �2 (∂kaj + fkj) + · · · ) (6.1)

Λα[a] = α+
1
2
θklal �2 ∂kα+ · · · , (6.2)

where fjk = ∂jak − ∂kaj is the Abelian field strength and
�2 is an abbreviation for the following power series in the
noncommutativity3 (it is not a �-product though):

3 This notation �2 is now widely used, e.g. in [9], [10] and
[11]

f �2 g = µ

(
sin(hθij

2 ∂i ⊗ ∂j)
hθij

2 ∂i ⊗ ∂j

)
(f ⊗ g), (6.3)

and µ(f ⊗ g) = f · g the ordinary multiplication map. It
is particularly convenient to use this multiplication in the
Fourier representation.
We will now derive this result. We know from [4] and

[12] that the following expressions for the noncommuta-
tive gauge potential and gauge parameter satisfy both the
Seiberg-Witten gauge condition and the consistency re-
lation (these expressions are valid for arbitrary Poisson
structures θ(x)):

Ai[a] =
(
exp(a� + ∂t)− 1) xi (6.4)

Λα[a] =
(exp(a� + ∂t)− 1

a� + ∂t

)
α, (6.5)

with the differential operator

a� =
∑ (ih)n

n!
Un+1(aθ, θ, · · · , θ) = θijaj∂i+ · · · , (6.6)

and the rule ∂tθ
il = −θijfjkθ

kl. The differential opera-
tor a� is obtained from the vector field aθ = θijaj∂i and
the Poisson bivector θ = θij∂i ⊗ ∂j via Kontsevich’s for-
mality maps Un (for further clarifications we refer to the
mentioned articles).
Expanding the exponentials results in an expansion

in powers of the ordinary gauge potential ai, each term
containing all powers of h:

Ai[a] = a�x
i︸︷︷︸

O(a1)

+
1
2
(a2

� + ȧ�)xi︸ ︷︷ ︸
O(a2)

+ · · · (6.7)

Λα[a] = α︸︷︷︸
O(a0)

+
1
2
a�α︸ ︷︷ ︸

O(a1)

+ · · · . (6.8)

Kontsevich has given a graphical prescription similar to
Feynman diagrams to compute the formality maps. Using
these it is straightforward to compute a� explicitly to all
orders in h for constant θ. The result is:

a�g =
(
θijaj

)
�2 ∂ig = θijaj∂ig + · · · , (6.9)

with the already mentioned product �2. Inserting this a�

into (6.7) and using the fact that a�x
i = aθx

i gives the
expressions for Ai[a] and Λα[a] stated at the beginning of
this section. Higher order terms can be obtained similarly.
A nice heuristic derivation of these results based on the
consistency condition has been given in [11].

7 Expansion of non-Abelian fields in a

Adopting a similar approach like in the previous section,
we here state a straight-forward result concerning the ex-
pansion of fields in a non-Abelian gauge theory in powers
of the commutative gauge potential.
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Assume that a field ψ (a representation of the envelop-
ing algebra δαψ = iΛα[a] � ψ) can be written as a matrix-
valued differential operator Φ[a] applied to the field ψ0

in the representation of the Lie algebra (δαψ0 = iαψ0):
ψ = Φ[a]ψ0. Then the variation of ψ can be written in the
following way:(

δαΦ[a]
)
ψ0 + Φ[a]

(
iαψ0) != iΛα[a] �

(
Φ[a]ψ0). (7.1)

To zeroth order in a this reads:

Φ1[∂α]ψ0 + iαψ0 = iα � ψ0. (7.2)

The second term in the variation of a, i[α, a], drops out
being first order in a. Due to the Bianchi identity of a
non-Abelian gauge theory (df +a∧f = 0), this expansion
is not well defined to higher orders in a and we will not
discuss orders different from O(a0). This problem does not
occur for the Abelian case. Continuing in our analysis we
set

Φ1[∂α]ψ0 = iα � ψ0 − iαψ0 =: −h

2
θkl(∂kα) • ∂lψ

0, (7.3)

where we have introduced the following shorthand4

f • g = µ

(
e

ih
2 θkl∂k⊗∂l − 1
ih
2 θ

kl∂k ⊗ ∂l

)
(f ⊗ g). (7.4)

This should be compared with the Moyal-Weyl-product:
f �g := µ(e

ih
2 θkl∂k⊗∂l)(f⊗g). With this shorthand for the

product we are free to integrate:

Φ1[ak]ψ0 = −h

2
θkl(ak) • ∂lψ

0. (7.5)

Therefore we obtain the following expansion (to first power
in a and all powers in h):

ψ = ψ0 − h

2
θkl(ak) • ∂lψ

0 + · · · , (7.6)

Okuyama [11] has computed Ai[a] and Λα[a] in a similar
fashion.

4 This product was also introduced in [13], there called �′′
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